Week 7, October 18 and 20

$\underline{\text { Basic of Graphs }}$

Definition 1. A graph G is bipartite if its vertex set can be partitioned into two parts (say A and B) such that each edge joints one vertex in A and another in B. And we say (A, B) is a bipartition of G.

For example, all even cycles $C_{2 k}$ are bipartite and all odd cycles $C_{2 k+1}$ are not.

Definition 2. Donate $K_{a, b}$ to be the complete bipartite graph with the points of sizes a and b. This is a bipartite graph with edge set $\{(i, j): i \in A, j \in B\}$ where $|A|=a,|B|=b$.

Definition 3. For a a graph H, we say a graph G is H-free is G contains NO H as its subgraphs.

For example, $K_{a, b}$ is K_{3}-free.

Turan Type Problem

For fixed graph H, we want to find the maximum number of edges in an H-free graph G with n vertices. We donate $e x(n, H)$ to the maximum number of edges in an n-vertex H-free graph G.

Theorem 4. $e x\left(n, C_{4}\right) \leqslant \frac{n}{4}(1+\sqrt{4 n-3})$

Proof. Let G be a C_{4}-free graph with n vertices. We want to prove that $e(G) \leqslant \frac{n}{4}(1+\sqrt{4 n-3})$.

Consider $S=\left\{\left(\left\{u_{1}, u_{2}\right\}\right), w: u_{1} u_{2} w\right.$ is a path of length 2 in $\left.G\right\}$. So G is C_{4}-free, for fixed $\left\{u_{1}, u_{2}\right\}$, there is at most one w s.t. $\left(\left\{u_{1}, u_{2}\right\}, w\right) \in S$.

So $|S|=\sum_{\left\{u_{1}, u_{2}\right\}} \#\left(\left\{u_{1}, u_{2}\right\}, w\right) \in S \leqslant \sum_{\left\{u_{1}, u_{2}\right\}} 1=\binom{n}{2}$
On the other hand, fixed $w, \#\left\{u_{1}, u_{2}\right\}$ s.t. $\left(\left\{u_{1}, u_{2}\right\}, w\right) \in S \leqslant\binom{ d(w)}{2}$
Putting the above together,

$$
\begin{aligned}
\binom{n}{2} \geqslant|S| & =\sum_{\left\{u_{1}, u_{2}\right\}} \#\left(\left\{u_{1}, u_{2}\right\}, w\right) \in S \\
& =\sum_{w \in V(G)}\binom{d(w)}{2} \\
& =\frac{n}{2}\left(\sum_{w \in V(G)} \frac{d^{2}(w)}{n}\right)-\frac{1}{2} \sum_{w \in V(G)} d(w) \\
& \geqslant \frac{n}{2}\left(\sum_{w \in V(G)} \frac{d(w)}{n}\right)^{2}-|E| \\
& =\frac{2|E|^{2}}{n}-|E|
\end{aligned}
$$

That is $|E|^{2}-\frac{n}{2}|E|-\frac{n^{2}(n-1)}{4} \leqslant 0$

$$
|E| \leqslant \frac{n}{4}(1+\sqrt{4 n-3})
$$

Corollary 5. $e x\left(n, C_{4}\right) \leqslant\left(\frac{1}{2}+o(n)\right) n^{\frac{3}{2}}$, where $o(n) \rightarrow 0$ as $n \rightarrow \infty$.
Theorem 6 (Mantal's Thm). $e x\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$
Proof. We first consider the lower bound $e x\left(n, K_{3}\right) \geqslant\left\lfloor\frac{n^{2}}{4}\right\rfloor$ as the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$ is K_{3}-free and has $\left\lfloor\frac{n}{2}\right\rfloor$ edges.

So all we need to prove is that $e x\left(n, K_{3}\right) \leqslant\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
We now prove by induction that any n-vertex K_{3}-free graph G has at most $\frac{n^{2}}{4}$ edges.

Base case: $n=1, n=2$ trivial.
Now we assume that any K_{3}-free graph H with less than n vertices has at most $\frac{|V(H)|^{2}}{4}$ edges. Let G be K_{3}-free with n vertices. Take any edge of G, say $x y \in E(G)$. Let $N_{x}=N_{G}(x)-\{y\}, N_{y}=N_{G}(y)-\{x\}$

Fact 1: $N_{x} \cap N_{y}=\varnothing$ and so $\left|N_{x}\right|+\left|N_{y}\right| \leqslant n-2$
Let H be a graph obtained from G by deleting vertex x and y. Note that H is also K_{3}-free and as $n-2$ vertices. By induction, $e(H) \leqslant \frac{(n-2)^{2}}{4}$. Thus we have that

$$
e(G)=e(H)+\left|N_{x}\right|+\left|N_{y}\right|+1 \leqslant \frac{(n-2)^{2}}{4}+(n-2)+1=\frac{n^{2}}{4}
$$

Theorem 7. For any $n \geqslant 1$, the n-vertex K_{3}-free graph G with maximum number of edges is unique and $G=K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$

Proof. By induction on n. Base case $n=1,2$ is trivial.
No we assume this holds for all integers less than n. Let G be an arbitrary K_{3}-free graph on n vertices and with $n \geqslant 1$, the n-vertex K_{3}-free graph G with maximum number of edges is unique and $G=K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$

$$
e x\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor \text { edges. We need to show } G=K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}
$$

Take an edge $x y \in E(G)$ as before. Then $\left|N_{x}\right|+\left|N_{y}\right| \leqslant n-2$. Let $H=G-\{x y\}$ and $e(G) \leqslant \frac{(n-2)^{2}}{4}$. Then $\left\lfloor\frac{n^{2}}{4}\right\rfloor=e(G)+\left|N_{x}\right|+\left|N_{y}\right|+1 \leqslant$ $\frac{(n-2)^{2}}{4}+n-1=\frac{n^{2}}{4}$

Thus, all inequalities must be equalities!

- $\left|N_{x}\right|+\left|N_{y}\right|=n-2$
- $e(H)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$

By induction, $H=K_{\left\lfloor\frac{n-2}{2}\right\rfloor,\left\lceil\frac{n-2}{2}\right\rceil}, N_{x} \cap N_{y}=\varnothing$.
Also note that N_{x} and N_{y} are independent sets (Otherwise it creats triangles). This implies that $N_{x} \in A^{\prime}$ or $N_{y} \in B^{\prime}$. Similarly $N_{y} \in A^{\prime}$ or $N_{x} \in B^{\prime}$.

Since $N_{x} \cap N_{y}=\varnothing$ and $\left|N_{x}\right|+\left|N_{y}\right|=n-2=|V(H)|$.
We see that $N_{x} \in A^{\prime}$ and $N_{y} \in B^{\prime}$, or $N_{y} \in A^{\prime}$ and $N_{x} \in B^{\prime}$. Either case shows that $G=K_{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}$.

Trees

Definition 8. A graph G is connected, if for any vertices u and v in G, G contains a path from u to v. Otherwise, we say G is disconnected.

Definition 9. A component of a graph G is a maximal connected subgraph of G.

Fact: G is disconnected if and only if G has ≥ 2 components.

Definition 10. A graph T is called a tree if it is connected but contains no cycles.

Definition 11. A vertex in a tree T with degree one is called a leaf.

Fact 1: Any tree has at least one leaf.

Proof. Suppose not, then any $v \in V(T)$ has degree ≥ 2. By the homework, T contains a cycle of length at least 3 , a contradiction.

Theorem 12 (Euler's Formula). For any tree $T=(V, E),|V|=|E|+1$.

Proof. By induction on n.
Base case: $n=2$. The tree is an edge with two endpoints. The statement holds.

Consider a tree $T=(V, E)$ with n vertices. By Fact $1, T$ has a leaf v. Then $T-\{v\}$ is still connected and of course it has no cycle. So $T-\{v\}$ is a tree with $n-1$ vertices. By induction, for $T-\{v\}$,

$$
\begin{aligned}
n-1= & |E(T-\{v\})|+1=|E(T)|-1+1, \\
& \Rightarrow|V(T)|=n=|E(T)|+1
\end{aligned}
$$

Fact 2: Any tree T with ≥ 2 vertices has ≥ 2 leaves.

Proof. Suppose not that T has a unique leaf v, so $\forall u \in V(T) \backslash\{v\}, d(u) \geq 2$.

$$
\sum_{x \in V(T)} d(x)=2|E|=2(|V|-1), \quad \sum_{x \in V(T)} d(x) \geq 2(|V|-1)+1,
$$

a contradiction.

Theorem 13 (Tree characterization). Let $T=(V, E)$ be a graph. Then the following are equivalent:
(i). T is a tree (i.e. connected and no cycle).
(ii). T is connected, but deleting any edge will result in a disconnected graph.
(iii). T has no cycle, but adding any new edge will result in a cycle.

Remark. Here, (ii) \Leftrightarrow a tree is a "minimal" connected graph. (iii) \Leftrightarrow a tree is a "maximal" graph without a cycle.

Proof. (i) \Rightarrow (ii): Suppose (ii) fails, then there exists $e=x y \in E(T)$ s.t. $T-\{e\}$ is still connected. Then $T-\{e\}$ has a path P from x to y. But then $P \cup\{e\}$ is a cycle in the tree T, a contradiction.
(ii) \Rightarrow (i): Suppose (i) fails, then T contains a cycle C. If we delete any edge from $C, T-\{e\}$ remains connected, a contradiction.
$($ i $) \Rightarrow($ iii $)$: For any new edge $f=x y$, as T is connected, T has a path P from x to y. Thus, $P \cup\{f\}$ gives a cycle.
(iii) \Rightarrow (i): Suppose (i) fails, so T is disconnected. Then T has two components, say D_{1} and D_{2}. Pick $x \in D_{1}$ and $y \in D_{2}$. If we add the new edge $f=x y$, then it is easy to see that $T+\{f\}$ still has NO cycles, a contradiction.

Definition 14. Given a graph $G=(V, E)$, a graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a spanning subgraph of G if H is a subgraph of G and $V=V^{\prime}$.

Fact 3: Any connected graph G contains a spanning tree.
Proof. Deleting edges of G until it satisfies the property (ii) in the above.

Definition 15. Given a connected graph G with n vertices, say v_{1}, \ldots, v_{n}. Let $S T(G)=\#$ of (labelled) spanning trees in G.

Theorem 16 (Cayley's Formula). $\forall n \geq 2, S T\left(K_{n}\right)=n^{n-2}$.

Proof 1. We first count the number of spanning trees in K_{n} with degrees, say, $d\left(v_{i}\right)=d_{i}$, where $\sum_{i=1}^{n} d_{i}=2(n-1)$.
Lemma: Let $d_{1}, d_{2}, \ldots, d_{n}$ be positive integers with $\sum_{i=1}^{n} d_{i}=2(n-1)$. Then the number of spanning trees on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and satisfying $d\left(v_{i}\right)=$ d_{i} is equal to

$$
\frac{(n-2)!}{\left(d_{1}-1\right)!\left(d_{2}-1\right)!\cdots\left(d_{n}-1\right)!}
$$

Proof of Lemma: We prove by induction on n.
Base case: $n=2 \Rightarrow d_{1}=d_{2}=2$. It holds.
We assume that this holds for any sequence of $n-1$ integers. Consider d_{1}, \ldots, d_{n}. As $\left(\sum d_{i}\right) / n<2$, there exists some $d_{i}=1$. (We may assume that $d_{n}=1$.) So V_{n} is a leaf. Let $\mathcal{F}=\left\{\right.$ spanning trees with $\left.d\left(v_{i}\right)=d_{i}\right\}$. $\forall i \in[n-1], \mathcal{F}_{i}=\left\{T-\left\{v_{n}\right\}: T \in \mathcal{F}\right.$, the unique neighbor of v_{n} in T is $\left.v_{i}\right\}$. So $|\mathcal{F}|=\sum_{i=1}^{n-1}\left|\mathcal{F}_{i}\right|$. And any tree in \mathcal{F}_{i} satisfies that

$$
\left\{\begin{array}{l}
d\left(v_{j}\right)=d_{j} \quad j \neq i, j \in[n-1] \\
d\left(v_{i}\right)=d_{i} .
\end{array}\right.
$$

By induction on $n-1$,
$\left|\mathcal{F}_{i}\right|=\frac{(n-3)!}{\left(d_{1}-1\right)!\cdots\left(d_{i}-2\right)!\cdots\left(d_{n-1}-1\right)!}=\frac{(n-3)!\left(d_{i}-1\right)}{\prod_{j=1}^{n-1}\left(d_{j}-1\right)!}, \forall i \in[n-1]$.

$$
\begin{aligned}
|\mathcal{F}| & =\frac{(n-3)!}{\prod_{j=1}^{n-1}\left(d_{j}-1\right)!}\left(\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right) \\
& =\frac{(n-3)!}{\sum_{j=1}^{n-1}\left(d_{j}-1\right)!}(2 n-2-(n-1)-1) \\
& =\frac{(n-2)!}{\prod_{j=1}^{n}\left(d_{j}-1\right)!} .
\end{aligned}
$$

Binomial Theorem:

$$
\begin{gathered}
(x+y)^{n}=\sum_{\substack{i+j=n \\
i, j \geq 0}} \frac{n!}{i!j!} x^{i} y^{j} \\
\Rightarrow\left(x_{1}+x_{2}+\cdots x_{k}\right)^{n}=\sum_{i_{1}+\cdots i_{k}=n} \frac{n!}{i_{1}!\cdots i_{k}!} x_{1}^{i_{1}} \cdots x_{k}^{i_{k}} \\
\Rightarrow k^{n}=\sum_{i_{1}+\cdots i_{k}=n} \frac{n!}{i_{1}!\cdots i_{k}!} .
\end{gathered}
$$

Proof 1:

$$
S T\left(K_{n}\right)=\sum_{\substack{\sum_{i=1}^{n} d_{i}=2(n-2) \\ d_{i} \geq 1}} \frac{(n-2)!}{\prod_{j=1}^{n}\left(d_{j}-1\right)!}=n^{n-2}
$$

