
Combinatorics, 2016 Fall, USTC

Week 7, October 18 and 20

Basic of Graphs

Definition 1. A graph G is bipartite if its vertex set can be partitioned

into two parts (say A and B) such that each edge joints one vertex in A and

another in B. And we say (A,B) is a bipartition of G.

For example, all even cycles C2k are bipartite and all odd cycles C2k+1

are not.

Definition 2. DonateKa,b to be the complete bipartite graph with the points

of sizes a and b. This is a bipartite graph with edge set {(i, j) : i ∈ A, j ∈ B}

where |A| = a, |B| = b.

Definition 3. For a a graph H, we say a graph G is H-free is G contains

NO H as its subgraphs.

For example, Ka,b is K3-free.

Turan Type Problem
For fixed graph H, we want to find the maximum number of edges in

an H-free graph G with n vertices. We donate ex(n,H) to the maximum

number of edges in an n-vertex H-free graph G.

Theorem 4. ex(n,C4) 6
n

4
(1 +

√
4n− 3)
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Proof. Let G be a C4-free graph with n vertices. We want to prove that

e(G) 6
n

4
(1 +

√
4n− 3).

Consider S = {({u1, u2}), w : u1u2w is a path of length 2 in G}. So G

is C4-free, for fixed {u1, u2}, there is at most one w s.t. ({u1, u2}, w) ∈ S.

So |S| =
∑
{u1,u2}

#({u1, u2}, w) ∈ S 6
∑
{u1,u2}

1 =
(
n
2

)
On the other hand, fixed w, # {u1, u2} s.t. ({u1, u2}, w) ∈ S 6

(
d(w)
2

)
Putting the above together,

(
n
2

)
> |S| =

∑
{u1,u2}

#({u1, u2}, w) ∈ S

=
∑

w∈V (G)

(
d(w)
2

)
=

n

2
(
∑

w∈V (G)

d2(w)

n
)− 1

2

∑
w∈V (G)

d(w)

>
n

2
(
∑

w∈V (G)

d(w)

n
)2 − |E|

=
2|E|2

n
− |E|

That is |E|2 − n

2
|E| − n2(n− 1)

4
6 0

|E| 6 n

4
(1 +

√
4n− 3)

Corollary 5. ex(n,C4) 6 (1
2
+ o(n))n

3
2 , where o(n)→ 0 as n→∞.

Theorem 6 (Mantal’s Thm). ex(n,K3) = bn
2

4
c

Proof. We first consider the lower bound ex(n,K3) > bn
2

4
c as the complete

bipartite graph Kbn
2
c,dn

2
e is K3-free and has bn

2
c edges.
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So all we need to prove is that ex(n,K3) 6 bn
2

4
c.

We now prove by induction that any n-vertex K3-free graph G has at

most n2

4
edges.

Base case: n = 1, n = 2 trivial.

Now we assume that any K3-free graph H with less than n vertices has

at most
|V (H)|2

4
edges. Let G be K3-free with n vertices. Take any edge of

G, say xy ∈ E(G). Let Nx = NG(x)− {y}, Ny = NG(y)− {x}

Fact 1: Nx ∩Ny = ∅ and so |Nx|+ |Ny| 6 n− 2

Let H be a graph obtained from G by deleting vertex x and y. Note that

H is also K3-free and as n − 2 vertices. By induction, e(H) 6 (n−2)2
4

. Thus

we have that

e(G) = e(H) + |Nx|+ |Ny|+ 1 6
(n− 2)2

4
+ (n− 2) + 1 =

n2

4

Theorem 7. For any n > 1, the n-vertex K3-free graph G with maximum

number of edges is unique and G = Kbn
2
c,dn

2
e

Proof. By induction on n. Base case n = 1, 2 is trivial.

No we assume this holds for all integers less than n. Let G be an arbitrary

K3-free graph on n vertices and with n > 1, the n-vertex K3-free graph G

with maximum number of edges is unique and G = Kbn
2
c,dn

2
e

ex(n,K3) = b
n2

4
c edges. We need to show G = Kbn

2
c,dn

2
e.

Take an edge xy ∈ E(G) as before. Then |Nx| + |Ny| 6 n − 2. Let

H = G−{xy} and e(G) 6
(n− 2)2

4
. Then bn

2

4
c = e(G) + |Nx|+ |Ny|+ 1 6

(n− 2)2

4
+ n− 1 =

n2

4
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Thus, all inequalities must be equalities!

• |Nx|+ |Ny| = n− 2

• e(H) = b(n− 2)2

4
c

By induction, H = Kbn−2
2
c,dn−2

2
e, Nx ∩Ny = ∅.

Also note that Nx and Ny are independent sets (Otherwise it creats tri-

angles). This implies that Nx ∈ A
′ or Ny ∈ B

′ . Similarly Ny ∈ A
′ or

Nx ∈ B
′ .

Since Nx ∩Ny = ∅ and |Nx|+ |Ny| = n− 2 = |V (H)|.

We see that Nx ∈ A
′ and Ny ∈ B

′ , or Ny ∈ A
′ and Nx ∈ B

′ . Either case

shows that G = Kbn
2
c,dn

2
e.

Trees

Definition 8. A graph G is connected, if for any vertices u and v in G, G

contains a path from u to v. Otherwise, we say G is disconnected.

Definition 9. A component of a graph G is a maximal connected subgraph

of G.

Fact: G is disconnected if and only if G has ≥ 2 components.

Definition 10. A graph T is called a tree if it is connected but contains no

cycles.

Definition 11. A vertex in a tree T with degree one is called a leaf.

Fact 1: Any tree has at least one leaf.
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Proof. Suppose not, then any v ∈ V (T ) has degree ≥ 2. By the homework,

T contains a cycle of length at least 3, a contradiction.

Theorem 12 (Euler’s Formula ). For any tree T = (V,E), |V | = |E|+ 1.

Proof. By induction on n.

Base case: n = 2. The tree is an edge with two endpoints. The statement

holds.

Consider a tree T = (V,E) with n vertices. By Fact 1, T has a leaf v.

Then T − {v} is still connected and of course it has no cycle. So T − {v} is

a tree with n− 1 vertices. By induction, for T − {v},

n− 1 = |E(T − {v})|+ 1 = |E(T )| − 1 + 1,

⇒ |V (T )| = n = |E(T )|+ 1.

Fact 2: Any tree T with ≥ 2 vertices has ≥ 2 leaves.

Proof. Suppose not that T has a unique leaf v, so ∀u ∈ V (T )\{v}, d(u) ≥ 2.

∑
x∈V (T )

d(x) = 2|E| = 2(|V | − 1),
∑

x∈V (T )

d(x) ≥ 2(|V | − 1) + 1,

a contradiction.

Theorem 13 (Tree characterization). Let T = (V,E) be a graph. Then the

following are equivalent:

(i). T is a tree (i.e. connected and no cycle).
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(ii). T is connected, but deleting any edge will result in a disconnected graph.

(iii). T has no cycle, but adding any new edge will result in a cycle.

Remark. Here, (ii)⇔ a tree is a “minimal" connected graph. (iii)⇔ a tree is

a “maximal" graph without a cycle.

Proof. (i)⇒(ii): Suppose (ii) fails, then there exists e = xy ∈ E(T ) s.t.

T −{e} is still connected. Then T −{e} has a path P from x to y. But then

P ∪ {e} is a cycle in the tree T , a contradiction.

(ii)⇒(i): Suppose (i) fails, then T contains a cycle C. If we delete any

edge from C, T − {e} remains connected, a contradiction.

(i)⇒(iii): For any new edge f = xy, as T is connected, T has a path P

from x to y. Thus, P ∪ {f} gives a cycle.

(iii)⇒(i): Suppose (i) fails, so T is disconnected. Then T has two com-

ponents, say D1 and D2. Pick x ∈ D1 and y ∈ D2. If we add the new edge

f = xy, then it is easy to see that T+{f} still has NO cycles, a contradiction.

Definition 14. Given a graph G = (V,E), a graph H = (V ′, E ′) is a span-

ning subgraph of G if H is a subgraph of G and V = V ′.

Fact 3: Any connected graph G contains a spanning tree.

Proof. Deleting edges of G until it satisfies the property (ii) in the above.

Definition 15. Given a connected graph G with n vertices, say v1, ..., vn.

Let ST (G) = # of (labelled) spanning trees in G.

Theorem 16 (Cayley’s Formula). ∀n ≥ 2, ST (Kn) = nn−2.
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Proof 1. We first count the number of spanning trees in Kn with degrees,

say, d(vi) = di, where
∑n

i=1 di = 2(n− 1).

Lemma: Let d1, d2, ..., dn be positive integers with
∑n

i=1 di = 2(n− 1). Then

the number of spanning trees on vertex set {v1, ..., vn} and satisfying d(vi) =

di is equal to
(n− 2)!

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!
.

Proof of Lemma: We prove by induction on n.

Base case: n = 2⇒ d1 = d2 = 2. It holds.

We assume that this holds for any sequence of n − 1 integers. Consider

d1, ..., dn. As (
∑

di)/n < 2, there exists some di = 1. (We may assume

that dn = 1.) So Vn is a leaf. Let F = {spanning trees with d(vi) = di}.

∀i ∈ [n− 1], Fi = {T − {vn} : T ∈ F , the unique neighbor of vn in T is vi}.

So |F| =
∑n−1

i=1 |Fi|. And any tree in Fi satisfies thatd(vj) = dj j 6= i, j ∈ [n− 1]

d(vi) = di.

By induction on n− 1,

|Fi| =
(n− 3)!

(d1 − 1)! · · · (di − 2)! · · · (dn−1 − 1)!
=

(n− 3)!(di − 1)∏n−1
j=1 (dj − 1)!

, ∀i ∈ [n− 1].
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|F| = (n− 3)!∏n−1
j=1 (dj − 1)!

(
n−1∑
i=1

(di − 1)

)

=
(n− 3)!∑n−1
j=1 (dj − 1)!

(2n− 2− (n− 1)− 1)

=
(n− 2)!∏n
j=1(dj − 1)!

.

Binomial Theorem:

(x+ y)n =
∑
i+j=n
i,j≥0

n!

i!j!
xiyj

⇒ (x1 + x2 + · · ·xk)
n =

∑
i1+···ik=n

n!

i1! · · · ik!
xi1
1 · · · x

ik
k

⇒ kn =
∑

i1+···ik=n

n!

i1! · · · ik!
.

Proof 1:

ST (Kn) =
∑

∑n
i=1

di=2(n−2)

di≥1

(n− 2)!∏n
j=1(dj − 1)!

= nn−2.
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