Combinatorics, 2016 Fall, USTC
Week 7, October 18 and 20

Basic of Graphs

Definition 1. A graph G is bipartite if its vertex set can be partitioned
into two parts (say A and B) such that each edge joints one vertex in A and

another in B. And we say (A, B) is a bipartition of G.

For example, all even cycles Cy, are bipartite and all odd cycles Coy 4

are not.

Definition 2. Donate K, to be the complete bipartite graph with the points
of sizes a and b. This is a bipartite graph with edge set {(i,j) : i € A, j € B}
where |A| = a, |B| =0.

Definition 3. For a a graph H, we say a graph G is H-free is G contains
NO H as its subgraphs.

For example, K, is Ks-free.

Turan Type Problem

For fixed graph H, we want to find the maximum number of edges in
an H-free graph G with n vertices. We donate ex(n, H) to the maximum

number of edges in an n-vertex H-free graph G.

Theorem 4. ex(n,Cy) < %(1 + V4n — 3)



Proof. Let G be a Cy-free graph with n vertices. We want to prove that
e(G) < %(1 +v/An = 3).

Consider S = {({ur,us2}),w : wqusw is a path of length 2 in G}. So G
is Cy-free, for fixed {uy, us}, there is at most one w s.t. ({ug,us},w) € S.

SolS|= Y #{uw,usbw)esS< X 1=(})
{u1,u2} {u1,u2}

On the other hand, fixed w, # {uy,us} s.t. ({ug,us},w) € S < (d(w))
Putting the above together,
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Corollary 5. ex(n,Cy) < (5 + o(n))n2, where o(n) — 0 as n — co.
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Theorem 6 (Mantal’s Thm). ex(n, K3) = | 7|
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Proof. We first consider the lower bound ex(n, K3) > |%-| as the complete

bipartite graph K|z n) is K3-free and has [ 5] edges.
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So all we need to prove is that ex(n, K3) < L%QJ

We now prove by induction that any n-vertex Ks-free graph G has at
most "72 edges.

Base case: n =1, n = 2 trivial.

Now we assume that any Ks-free graph H with less than n vertices has
V(H)?

at most edges. Let G be Kj-free with n vertices. Take any edge of
G, say xy € E(G). Let N, = Ng(z) — {y}, N, = Na(y) — {z}

Fact 1: N, NN, = @ and so |N,| + |N,| <n —2

Let H be a graph obtained from G by deleting vertex x and y. Note that

H is also Kj-free and as n — 2 vertices. By induction, e(H) < @. Thus

we have that

_9)2 2
e(G) = e(H) + [No| + [N, +1 < =2 o

Theorem 7. For any n > 1, the n-vertex Ks-free graph G with maximum

number of edges is unique and G = K|z |z

Proof. By induction on n. Base case n = 1,2 is trivial.
No we assume this holds for all integers less than n. Let GG be an arbitrary
K3-free graph on n vertices and with n > 1, the n-vertex Ks-free graph G

with maximum number of edges is unique and G = K|z [z

n2

ex(n, K3) = LZJ edges. We need to show G = K| zy.
Take an edge zy € E(G) as before. Then |N,| + |N,| < n — 2. Let

(n —2)? n?
H =G —{zy} and ¢(G) < ————. Then LZJ =e(G)+ Ny |+ [Ny | +1 <
(n —2)? o
1 +n—1= 1



Thus, all inequalities must be equalities!

o [N+ |Ny=n—-2

o ety = 120

By induction, H = KLnT—2J7"nT—2", N, NN, = @.

Also note that N, and N, are independent sets (Otherwise it creats tri-
angles). This implies that N, € A or N, € B'. Similarly N, € A or
N, € B

Since N, N N, = @ and |[N,|+ |N,| =n —2 = |[V(H)|.

We see that N, € A" and N, € B, or N, € A" and N, € B'. Either case
shows that G = K|z 2. 1

Trees

Definition 8. A graph G is connected, if for any vertices u and v in G, G

contains a path from u to v. Otherwise, we say G is disconnected.

Definition 9. A component of a graph G is a maximal connected subgraph

of G.
Fact: G is disconnected if and only if G has > 2 components.

Definition 10. A graph T is called a tree if it is connected but contains no

cycles.
Definition 11. A vertex in a tree T" with degree one is called a leaf.

Fact 1: Any tree has at least one leaf.



Proof. Suppose not, then any v € V(7T') has degree > 2. By the homework,

T contains a cycle of length at least 3, a contradiction. 1
Theorem 12 (Euler’s Formula ). For any tree T'= (V, E), |V| = |E| + 1.

Proof. By induction on n.

Base case: n = 2. The tree is an edge with two endpoints. The statement
holds.

Consider a tree T' = (V, E) with n vertices. By Fact 1, T has a leaf v.
Then T — {v} is still connected and of course it has no cycle. So T'— {v} is

a tree with n — 1 vertices. By induction, for 7" — {v},
n—1=|E(T—{v})|+1=|E(T) —-1+1,

= [V(T)| =n = |E(T)| + 1.

Fact 2: Any tree T' with > 2 vertices has > 2 leaves.

Proof. Suppose not that 7" has a unique leaf v, so Vu € V(T)\{v}, d(u) > 2

> d(@)=2E=2(V[-1), Y dx)>2(V|-1)+1,

zeV(T) zeV(T)
a contradiction. (]

Theorem 13 (Tree characterization). Let T'= (V, E) be a graph. Then the

following are equivalent:

(i). T is a tree (i.e. connected and no cycle).
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(i1). T is connected, but deleting any edge will result in a disconnected graph.
(1i). T has no cycle, but adding any new edge will result in a cycle.

Remark. Here, (ii)< a tree is a “minimal" connected graph. (iii)< a tree is

a “maximal" graph without a cycle.

Proof. (1)=(ii): Suppose (ii) fails, then there exists ¢ = zy € E(T) s.t.
T —{e} is still connected. Then T'— {e} has a path P from x to y. But then
P U {e} is a cycle in the tree T, a contradiction.

(ii)=(i): Suppose (i) fails, then 7" contains a cycle C. If we delete any
edge from C, T — {e} remains connected, a contradiction.

(i)=(iii): For any new edge f = zy, as T' is connected, T" has a path P
from z to y. Thus, P U{f} gives a cycle.

(iii)=-(i): Suppose (i) fails, so T" is disconnected. Then T" has two com-
ponents, say Di and D,. Pick x € Dy and y € D,. If we add the new edge
f = zy, then it is easy to see that T+{ f} still has NO cycles, a contradiction.

|

Definition 14. Given a graph G = (V, E), a graph H = (V', E') is a span-
ning subgraph of G if H is a subgraph of G and V = V".

Fact 3: Any connected graph GG contains a spanning tree.
Proof. Deleting edges of G until it satisfies the property (ii) in the above. B

Definition 15. Given a connected graph G with n vertices, say vy, ..., v,.

Let ST(G) = # of (labelled) spanning trees in G.

Theorem 16 (Cayley’s Formula). Vn > 2, ST(K,,) = n"2.



Proof 1. We first count the number of spanning trees in K, with degrees,
say, d(v;) = d;, where > d; =2(n —1).

Lemma: Let dy,ds, ..., d,, be positive integers with Y. d; =2(n—1). Then
the number of spanning trees on vertex set {vy,...,v,} and satisfying d(v;) =

d; is equal to
(n—2)!
(dy — DN(dy — 1)+ (d, — 1)

Proof of Lemma: We prove by induction on n.

Base case: n =2 = d; = dy = 2. 1t holds.

We assume that this holds for any sequence of n — 1 integers. Consider
di,....d,. As (D d;)/n < 2, there exists some d; = 1. (We may assume
that d, = 1.) So V, is a leaf. Let F = {spanning trees with d(v;) = d;}.
Vie[n—1], F; ={T — {v,} : T € F, the unique neighbor of v, in 7" is v;}.
So |F| = 317" | Fi|. And any tree in F; satisfies that

d(vj) =d; j#1i,j€[n—1]

By induction on n — 1,
(n —3)! (n=3)(d;—1) _,.
Fi| = = , Vie n—1].
il (dy — D)o (dy = 2)! -+ (dppqy — 1)! szll(dj—l)! | |



(n —3)!
Z?:_ll(dj 1 2n—2—(n—1)—1)
(n—2)!

Binomial Theorem:
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